Regression-based Network Monitoring in Swarm Robotic
Systems

Josh Rands
Department of Computer Science
Colorado School of Mines
Golden, Colorado
jmrands@mines.edu

ABSTRACT

Mobile ad-hoc networks are becoming more common as robotic
swarm technology becomes possible. One issue surrounding swarm
technology is communication between robots. Communication
costs time and energy, and can impact the performance of a swarm.
In order to control the network, network state information must
be acquired through network monitoring. We propose a novel
REgression-based network Monitoring (REM) algorithm where
robots in a swarm receive network state data only when neces-
sary for the task at hand. This algorithm will save time and energy
in communication by creating predictive models using regressions,
minimizing network monitoring overhead.

CCS CONCEPTS

» Networks — Network monitoring; Control path algorithms;
Network control algorithms; Network design and planning algorithms;
Programming interfaces; Network management.

KEYWORDS

network monitoring, swarm robotics, linear regressions, best fit,
predictive modeling, mobile ad-hoc networks, distributed networks

ACM Reference Format:

Josh Rands and Qi Han. 2019. Regression-based Network Monitoring in
Swarm Robotic Systems. In Proceedings of the 16th EAI International Confer-
ence on Mobile and Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous ’19). ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION

A robotic swarm is a group of locally interacting robots collaborat-
ing towards a common goal [5]. These robots can be air vehicles,
ground robots, etc. Swarm robotic systems have an overwhelming
number of possible applications as they provide many advantages
over single robots. Robotic swarms can exploit the sensing capa-
bilities of having a large group; robots in the swarm can specialize
their sensors and be built for a specific purpose. Robotic swarms
have high situational awareness which allows them to be deployed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiQuitous ’19, November 2019, Houston, Texas, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/1122445.1122456

Qi Han
Department of Computer Science
Colorado School of Mines
Golden, Colorado
ghan@mines.edu

in highly constrained environments unfit for humans. Potential
environments where human deployment is impractical, but robotic
swarms can flourish, include: nuclear, chemical, and biological at-
tack detection [5, 21]; battlefield surveillance [5, 21]; search and
rescue [5]; and space exploration [5]. In addition, robotic swarms
can provide many benefits in environmental monitoring of forests,
lakes, etc., and pollution detection [5]. If properly implemented,
robotic swarms will be robust to corrupt robots as well as robots
leaving or joining the network. Robustness is particularly interest-
ing in tasks such as mine detection. Individual robots in a swarm
can sacrifice themselves to locate explosives [21]. Further, robotic
swarms are capable of distributing workloads to provide more sig-
nificant results over large areas. Distributing tasks among robots
allows for simultaneous completion of multiple tasks by the swarm.

Effective network monitoring is vital to the success of swarm
robotics. The role of network monitoring in swarm robotics is to
provide updated state information about robots and networks, i.e.,
local and pair-wise parameters. Local parameters include robot-
specific data such as battery consumption, average data rate, and
mobility. Pair-wise parameters include data between two nodes
in the network such as received signal strength indicator (RSSI),
bandwidth, delay, link quality, and packet loss rate.

Network monitoring can be placed on top of existing infrastruc-
tures to provide a service to upper layer protocols or algorithms.
In the context of the applications previously discussed, network
monitoring provides information to be used for different swarm
tasks. When delegating tasks in a swarm, it is vital for a node to
be knowledgeable of its peers. One example of how network mon-
itoring information could be used is in coverage planning. It is
possible for a coverage planning algorithm to consider the battery
level of each node in the network. Another example is Quality of
Service (QoS) routing for multimedia data captured by robots in
a swarm. Many QoS routing algorithms consider bandwidth and
delay constraints between nodes when planning the routing path.
Yet another example is point to point routing where the best route
is defined as the one that provides the best link quality based on
RSSL

Network monitoring in swarm robotic systems is faced with
several interesting challenges, including limited onboard resources,
stringent energy constraints, and the dynamic network topology
of swarms.

o Network monitoring is a foundation service that supports
designated missions. With limited onboard computation and
storage resources on each robot, network monitoring must
be light weight and cost effective in order to not interfere
with the mission.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MobiQuitous 19, November 2019, Houston, Texas, USA

e When a robotic swarm is completing a mission with tight
constraints, battery is a major limitation. For a robot, the
most energy consuming activity is movement. The second
largest source of energy consumption is communication. En-
ergy consumed by computation and sensing is much less
than moving and communication. While network monitor-
ing has no control over robot mobility, it can try to reduce
communication incurred.

e In mobile robotic swarms, network topology is constantly
changing due to the robots’ mobility and varying link quality
between robots. In addition, robots may join or leave the
network at any time. Hence, effective network monitoring
solutions must be robust to the dynamic trends of mobile
robotic swarms.

To the best of our knowledge, existing distributed swarm ro-
botics methods do not provide an effective solution for network
monitoring. Drawbacks to these solutions include unnecessary
communication, wasted energy, or even insufficient information.
Further details regarding related works are addressed in Section 2.

To overcome the drawbacks of existing approaches, we adopt
a distributed hierarchical paradigm. To reduce overhead incurred
by network monitoring and to avoid interfering with robot coordi-
nation and data communication, we apply the concept of approx-
imate monitoring. Instead of maintaining accurate system state
information for each region of the entire environment, we only
maintain system status information at a “sufficient” level of accu-
racy to ensure desired quality. The approximate monitoring is one
distinguishing feature of our approach.

2 RELATED WORK

Since robotic swarm systems highly resemble MANETs (Mobile
Ad-hoc Networks), we surveyed existing network monitoring solu-
tions developed for MANETs. Network monitoring solutions can be
classified based on monitoring architectures, network status data
representation, data storage, and monitoring frequency.

Monitoring Architectures. Network monitoring in MANETs
use either hierarchical or flat architectures [6]. Hierarchical ap-
proaches to MANET monitoring are separated by the presence of a
central entity.

o In centralized hierarchical approaches [4, 7, 9, 22, 27], nodes
are divided into “clusters.” Clusters have a node that is des-
ignated to be in charge of monitoring that cluster. This node
may be referred to as the “clusterhead” [9], a “manager node”
[4, 27], or a “domain policy agent” [7]. These approaches are
considered centralized because of the presence of a single
entity that is above the nodes managing the clusters.

e Decentralized hierarchical approaches [2, 11, 12, 18-20, 25,
26, 28] use distributed algorithms where monitoring is done
without a top-level node managing the entire network. These
algorithms run on each node in the network without global
knowledge of the network. Just like the centralized hierar-
chical approaches, the distributed hierarchical approaches
create clusters that are managed by a manager node. The
managing node commonly contains a dominant trait in its
cluster [6, 12, 20, 25, 28].

Rands and Han

Flat network monitoring architectures [6, 19, 26, 29] distribute net-
work management tasks throughout the network without relying
on a clustering topology [6]. Some flat approaches distribute moni-
toring nodes throughout the network that act as sinks [18, 19, 26].
These nodes gather information for agent nodes as they pass by.
Flat architectures are far less common than hierarchical ones. This
is because flat architectures have difficulty with scaling. As net-
work size increases, it becomes increasingly difficult to monitor a
network using a flat architecture [6].

Monitoring Frequency. The frequency of network monitoring
typically falls into one of three categories: event driven, oppor-
tunistic, or periodic. Event driven approaches provide network
monitoring upon a ’trigger’ event (3, 6, 7, 11, 12, 19, 20, 29]. Oppor-
tunistic approaches gather data whenever a monitoring agent has
the ability to monitor another node in the network [18, 27]. Peri-
odic network monitoring provides monitoring every predetermined
time unit [4, 8, 25, 26, 28].

Network Status Data Representation/Model. Our proposed
work applies approximation algorithms for different local and pair-
wise parameters in a network, which is similar to what has been
done in the state of the art in creating models for sensornets [14].
One approach uses a time varying multivariate Gaussian with prob-
abilistic confidences to compute sensor models.

Probabilistic models for predicting data in MANETSs have been
described in [4, 13, 17, 23]. One method is to use a statistical model
that uses historical data to predict the next time two nodes will be in
contact in a P2P (peer to peer) network [23]. This model calculates
the mean estimation for how long it will be until nodes are in
contact, as well as a standard deviation to provide error. Another
model calculates a spatio-temporal probability that two nodes will
be connected, and builds clusters of predicted-to-be well connected
nodes [4].

Network Status Data Storage. A common method for storing
local and global data in MANETs is through a Management Infor-
mation Base (MIB). Several different methods use an MIB to keep
track of network states [9]. In hierarchical approaches, data is often
aggregated by manager nodes [6, 22], the manager locally stores in-
formation for all of the nodes in its cluster. In distributed approaches
data is stored locally on each node [3, 6, 16, 19, 20, 27, 29].

3 REGRESSION BASED NETWORK
MONITORING (REM)

We have designed a novel network monitoring approach to monitor
a swarm robotic network in a cost effective manner. Since commu-
nication consumes more energy than computation, the REgression-
based network Monitoring (REM) approach decreases communica-
tion overhead by having nodes predict values of their peers instead
of communicating whenever possible, decreasing battery consump-
tion. Saving battery is an absolutely crucial aspect to the success of
swarm robotics, and we believe REM can move this evolving field
towards a viable and effective network monitoring solution.

3.1 Overview

REM follows a distributed hierarchical approach. We chose a dis-
tributed approach because we do not want REM to have a single

Regression-based Network Monitoring in Swarm Robotic Systems

point of failure from a centralized entity. A distributed architec-
ture is flexible and allows for the immediate deployment of the
swarm in any environment. REM follows a hierarchical approach
in which nodes in the network are assigned as either a child node
or a clusterhead. We chose a cluster-based approach because 1)
clustering greatly reduces network monitoring overhead by only
sending network monitoring messages to a node’s clusterhead and
2) in many situations nodes in a swarm naturally cluster together.
For example, in an evacuation, groups of people move as one unit,
providing a natural transition to forming clusters.

REM predicts network parameters whenever possible. Models
are created using regressions that provide accuracy within a thresh-
old for the task at hand. Child nodes create REM prediction models
for local and pair-wise parameters and transmit them to their clus-
terhead. During runtime, the clusterheads run the REM prediction
models of their child nodes. As long as an updated model is not
transmitted, the model is assumed to hold true to its estimated
accuracy. A flow chart showing how nodes transfer models to their
clusterhead is shown in Figure 1.

Initial model
broadcasted to
network

Model not
locally stored

Identify
Model
Owner

Create local
model for
this node

Moadel already
exists locally
Model

New model created

received from
network

Update
local model
for this
node

Wait for
new model
from
network

Model
updated

Figure 1: Flow chart for clusterheads

Every REM model is built as a function of time. Therefore, at any
time t, the clusterhead can calculate the predicted value of different
network parameters for its child nodes.

When a node transmits an updated model, it simultaneously
begins running that model. While running its own model, the node
is comparing its predicted values to the actual measured values.
When the measured value falls outside of the error threshold of the
predicted value for the model, the node will update the model and
transmit the new model to the network.

3.2 Generating REM Models

Historical measured data allows REM to perform best fit regressions.
REM can represent large data sets with only three variables: f, p,
and 0. REM generates all predictive models as a function of time. A
table showing the different internal parameters for building REM
models is shown in Table 1.

MobiQuitous 19, November 2019, Houston, Texas, USA

Table 1: REM Internal Model Parameters

H Variable ‘ Description H

Q Network wide max error threshold (percentage)

I Initialize count, number of data points needed
for initial model

Dpax | Maximum difference count

S Number of standard deviations to fall outside
threshold

A Max difference to fall within threshold

w A list of weighted averages and time stamps

N Current window size

Q A list of outliers within W and N

ot A particular model’s standard deviation at time ¢

All prediction models created in REM use best fit regressions.
The regression models are performed on I data points. During the
network’s lifetime, the window size N determines how many points
are used to generate new models for models that perform poorly. In
this work, we focus on modeling two parameters: remaining battery
level as a representative for local data, and received signal strength
(RSS) as a representative for pair-wise data. The process for gen-
erating a REM prediction model is outlined below. All regressions
are performed on a list of weighted averages, W, for a window N.
The window size is set at the start of a network’s lifetime.

All models take the following form where P(t) is the predicted
value at time ¢ and F(t) is some function of time. Equation 1 shows
the generic equation for a REM prediction model.

P(t) = p=F(t) + p (1)
Creating a REM prediction model follows a three-step process.

Step 1 : Linearize the input data. This is done by taking every
data point and replacing the time with F(t).

Step 2 : Perform a linear regression on the linearized data.
The linear regression will provide the slope, y, and the y-
intercept, f of the linearized data. The linear regression is
performed using the equations outlined below, where x;
represents the i’ h linearized time value, X represents the
mean of the linearized times, y represents the measured data
points, and n represents the number of data points.

Sx = Zixiasy =2iYi
Sxx = 2i(xi _7_5)2
Sxy =2ilxi =%)*(yi - 7)
Sxx = 2iyi - ?)2
H= (”*Sxy — Sx *Sy)/(n*sxx — Sx *Sx)
B= (Sy * Sxx — Sx * Sxy)/(n * Sxx — Sx * Sx)
Step 3 : Use p and f to build Equation 1.

3.2.1 Remaining Battery Level. For the remaining battery level
prediction model, REM uses a linear regression. The battery level of
a node is dependent on three main activities: movement, network
communication, and computation. REM assumes that throughout
a node’s lifetime in a network, these activities will be relatively
constant, maintaining a linear drain in battery life. Even if there is
variance in the level of battery draining, the REM model will remain
valid if the actual value lies within a reasonable distance from the
predicted value of the model. If the battery is more dynamic, REM

MobiQuitous 19, November 2019, Houston, Texas, USA

will simply recalculate the model more frequently and still provide
valid monitoring of battery level. Equation 2 shows the final form
of the REM battery level prediction model.

Battery(t) = p*t+f (2)

3.2.2 Received Signal Strength. For the received signal strength
prediction model, REM uses a logarithmic regression. A logarithmic
regression is performed by linearizing the data, performing a linear
regression on the linearized data, and then converting the data
back to a logarithm. Equation 3 shows the final form of the REM
logarithmic regression model for predicting RSS.

RSS(t) = p * In(t) + B 3)

RSS has been shown to be logarithmically proportional to the
distance between the transmitting and receiving nodes [15]. Be-
cause the two nodes in this experiment are moving at a constant
velocity, RSS is also logarithmically proportional to time, as shown
in Figure 2(a).

The next step for generating a logarithmic regression model is
to linearize the data. This is done by replacing the time with the
natural log of the time (In(time)). The linearized data is shown in
2(b). Now, a linear regression can be performed on this data, and
an RSS REM prediction model can be formed.

3.3 Regression Window

The data in the regression window changes when Dy, 4x consecu-
tive bad data points have been received and the REM model needs
to adapt. There are three different criteria for determining if a REM
model no longer fits the incoming data. REM checks all three critera
at a predetermined update frequency: 1) The data is an outlier, or
falls outside of S standard deviations of the predicted value, 2) The
data is outside of the max threshold A for the task at hand, and
3) The data is consistently off by similar margin so the model is
trending wrong. The trend error uses one standard deviation, or ¢
as the minimum error for a bad trend remodel to occur. The REM
procedure for determining bad data is shown in Algorithm 1.

Algorithm 1 Bad data detection algorithm

1: procedure DETECTBADDATAPOINT

2: deviation < abs(value - predictedValue)

3 if deviation > A then

4 return "Threshold error”

5: else if deviation > S * o; then

6 return "Standard deviation error"

7 else if deviation > (S * 0;)/3 then

8 if (lastDeviation < 0 AND deviation < 0) OR
9: (lastDeviation > 0 AND deviation > 0) then

10: return "Bad trend error”

Once Dyqx consecutive bad data points are detected, a new
model must be created. The node will continue measuring data
until it has N data points, build a model, and then broadcast the
updated model.

Rands and Han

3.4 Error Model

The error of a model is represented by o. REM calculates the aver-
age deviation from the predicted model value for all measured data
values within the window of the newly created model. The calcula-
tions for o are shown below, where P(t;) represents the prediction
model value at time t;, M; represents the measured value at time
t;, and j represents the data point measured N samples ago.

j+N
Ototal = Z]izj |P(t:) — Mi|

Omodel = Trotal/N

In the case where the average deviation is very low, o is set to a
minimum deviation which can be manually set for the application.
The default value for minimum deviation is 1/5 of the maximum
deviation that the task can handle. The goal of setting a minimum
deviation is to remove bias in models that calculate unrealistic
average deviations. It is possible that N consecutive data values
will form a perfect regression that is actually not a good fit for
future data points.

The error parameter can be used by application layer protocols
to determine the accuracy of predicted values by the REM model.
Using o, a range of possible values can be calculated.

3.5 Network Packets and MIB

This section describes the structure of REM packets and how cluster-
heads store REM prediction models in a Management Information
Base (MIB). Once REM creates a new model, it must be transmitted
to the node’s clusterhead. The structure of a REM prediction model
packet is shown below.

0123456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Node ID Model Time To Live (s) Model Type
Mu (float)
Beta (float)

Sigma (float)

The first byte of the packet is the ID of the parent, or transmitting
node. The next 2 bytes are the time to live of the model in seconds.
By allowing 16 bits, the model can have a maximum time to live
of 21¢ - 1 seconds, which is approximately 18 hours. The next byte
represents the type of model. The next 12 bytes represent the model
parameters y, f§, and o, which are all interpreted as 4 byte floats.

Upon receiving a packet from a child node, the clusterhead stores
the REM prediction model in its MIB. The MIB stores one model
of each type for each of its child nodes. For example, if node 1 has
child nodes 2, 3, and 4, node 1 will store battery models and RSS
models for nodes 2, 3, and 4 in its MIB. A child node will transmit a
REM RSS prediction model for every node it is connected to.

The MIB is used to provide network monitoring information
upon request to other applications in the network. When providing
network monitoring information, the clusterhead simply finds the
model for the requested node, and calculates the updated value as
a function of time using p and f.

Regression-based Network Monitoring in Swarm Robotic Systems

Time vs. RSS

50 —8—RSS

RSS (dB)

Time (s)

(a) Relationship between received signal strength and time

MobiQuitous 19, November 2019, Houston, Texas, USA

In(time) vs. RSS

4 05 1 15 2 25 3 35 4

—m—Rss

RSS (dB)

In(time)

(b) Linearized data from Figure 2(a)

Figure 2: Process of linearizing measured RSS data

3.6 Model Creation Complexity

Assume a swarm size of S. Each node in the network is creating
REM prediction models for all of its neighbors. At any given time,
each node can have at most S prediction models. S—1 RSS prediction
models if the node is connected to every other node in the network,
and 1 REM model for local battery drain.

Now, consider that the time complexity to form a prediction
model takes time C. The time complexity of REM on a given node
in the swarm is O(S = C). C is related to the window size of REM,
N. The window size is the number of points that are used to form
the regression model. Recall the three step process to creating a
prediction model using REM. Step 1 is to linearize the input data,
and step two is to run a linear regression. Linearizing the data and
finding the mean values X and 3 can be done in O(N) time. Once
these values have been calculated, performing the linear regression
also takes linear time. Finally, calculating the error of the newly
formed model can be done in linear time. Therefore, the complexity
of REM for a given node is O(S * N).

4 PERFORMANCE EVALUATION

To evaluate our approach, we first validate the REM prediction
model using both realistic and synthetic data sets, then identify the
best parameters to use for REM, and finally compare REM against
a brute-force approach in supporting application level tasks.

4.1 Validation of REM Prediction Models

Two preliminary studies were done to test REM’s ability to predict
received signal strength between nodes. We tested two scenarios:
an infrastructure based network and a peer to peer based network.
While we have designed REM with the intention of being used
in distributed peer to peer networks, it is important to test its
prediction capability in a network with a centralized infrastructure.

The infrastructure based study shows REM’s ability to predict
the received signal strength of a single mobile node. In addition,
this study was used to show that while received signal strength
is known to be logarithmically proportional to distance, REM can
build prediction models that are logarithmically proportional to
time to predict future RSS. In this study, the node is moving in

an outdoor environment and communicating with a central access
point (AP). This study also showed REM’s capability to deal with im-
precise, real world data. We compared REM’s prediction capability
to the predicted RSS of Friis Propagation Loss algorithm [15].

The peer to peer study showed REM’s abilty to predict the re-
ceived signal strength between two or more mobile nodes. This
study was a proof of concept to prove that two nodes moving in
different directions still have predictable signal strength.

4.1.1 Infrastructure Based RSS Prediction. This infrastructure based
study shows REM’s ability to predict RSS between a node and a
static AP. The study justified REM’s performance by comparing the
REM prediction model to a well known received signal strength
equation: the Friis Propagation Loss algorithm [15]. The Friis Prop-
agation Loss algorithm uses the distance between two nodes to
predict the signal strength. The REM model is able to predict the
signal strength without knowing the distance between the nodes.
This is essential for REM because we want REM to be robust to a
variety of environments that may not have GPS capabilities such
as underground, space, etc.

This study was done using real world data collected from a mo-
bile robot [24]. The data used was obtained from Crawdad. Using
real world data introduced error, thus making the REM predic-
tion model not perfectly accurate. The data set had radio signal
strength and location data from a mobile robot in a semi-outdoor
environment.

In order to use the data with REM, a modification had to be made.
Any data rows where the robot was immobile (velocity = 0 m/s)
were removed. REM used time stamps to predict future RSS values.
Figure 3 shows the received signal strength predictions from REM
and the Friis model.

On average the Friis propagation loss RSS prediction was off by
1.96642 dB and REM was off by 2.25084 dB. When the REM model
becomes outdated, or the robot changes direction, there are Dy, qx
consecutive bad data points before the model adapts. These bad
data points significantly contribute to the average error of REM.
Without these values, the REM model is much more accurate. This
study showed that REM is capable of predicting the received signal

MobiQuitous 19, November 2019, Houston, Texas, USA

REM Prediction Model vs. Friis Propagation Loss Model

@ Actual RSS

—50 4

® REM Predicted RSS
@ Friis Predicted RSS

—55 ; -:..| oo =.. .
°

RSS (dB)

—60 . o:. :!. -.

—65

~70 °

Figure 3: Predicted received signal strength of REM and Friis

strength of a node moving with respect to a centralized infrastruc-
ture. This study also showed that while RSS is known to be logarith-
mically proportional to distance, REM is capable of calculating the
RSS between two nodes without knowledge of distance. Because
the node are mobile, and distance is a time varying parameter, the
distance can be replaced with time. Another important aspect of
this study is the use of real world data. Even though the data has a
significant amount of error because of natural phenomena, REM is
capable of predicting the RSS.

4.1.2 Peer to Peer RSS Prediction. A second study was done to
test REM’s prediction capability in a peer to peer network. The
simulation was done using Network Simulator 3 (NS3).

We created an evacuation scenario as shown in Figure 4. Twelve
nodes were placed in the environment in different rooms. This
setup allowed some nodes to move in the same direction and some
nodes to move in completely different directions. We were able to
analyze REM’s prediction ability in both scenarios.

EXIT EXIT
@ €]
| _ 1
| @
(€) 1 O
©
¢ | O I
|
@®
EXIT EXIT

Figure 4: Floor schematics and node locations for the indoor
evacuation simulation

The simulation starts when a fire alarm goes off. At this time,
every node immediately moves towards the exit of its room. Once
in the hallway, the nodes move to the closest EXIT. The average

Rands and Han

error of REM was 4.2779 dB. Further analysis showed that error was
greatly increased because of specific outlier points. Outliers occur
when change direction when they are already close together. This
movement causes a drastic increase in RSS. REM requires multiple
samples to adapt to changes in movements, so for this brief period
of time there is a large amount of error. This phenomena can be
seen between Node 0 and Node 2 in Figure 5(a) and Node A and
Node B in Figure 5(b). When these nodes turned, one node was able
to take an ’inside’ turn moving the nodes closer together.

In cases where nodes never get close to each other, REM performs
very well. This can be seen between Node 0 and Node 7 in Figure
5(c).

This preliminary study showed REM is not only capable of pre-
dicting the RSS of a mobile node from a static base station, but it
can dynamically predict the signal strength between two mobile
nodes with similar accuracy.

4.2 Simulation Scenario

An environmental monitoring scenario was created using Network
Simulator 3 (NS3). We were able to modify NS3 source code to pro-
vide network monitoring (REM), clustering, and a custom routing
algorithm to the drone swarm.

Because REM is providing a service to upper layer protocols, it
was created on the application layer. Other layers in the network
were created using existing NS3 frameworks. The physical layer
was configured to 802.11b for this work. The ad-hoc Wi-Fi MAC
layer was used for this simulation. We modified an existing battery
model to allow battery drain for network communication and node
movement. Drones followed the Random Waypoint Mobility Model
which made drones move directly to a random location in the
simulation space at a constant velocity.

The simulation scenario consists of a swarm of drones moving
around a space with dimensions DxD. There is be a static central
server that is collecting environmental monitoring information
from drones in the swarm. The server is located at (0, D/2) in the
simulation space. The goal of the swarm is to move around the
space, collect environmental monitoring data, and then route that
information back to the central server for storage.

Nodes in the network were assigned different velocities ranging
between 2 m/s and 15 m/s. This is because the velocity range for
a standard commercial drone while taking video is 1.5 m/s to 10.5
m/s [1]. In the future, we would like REM to provide network
monitoring to allow QoS routing of multimedia data. The max
speed of the Parrot Bepop 2 drone is 37.28 mph, which is just over
16 m/s, providing the max velocity cap for these simulations.

We started with internal experiments which identified the op-
timal values for internal REM parameters. Internal experiments
tried different combinations of internal parameters within REM,
and compared the percent error of REM’s prediction compared to
the actual measured value.

Once the internal experiments were complete, the most success-
ful REM configuration was compared to our baseline approach in
the external experiments. The external experiments included clus-
tering and routing. Two metrics were compared between REM and
our baseline approach for a variety of different simulation setups:
1) network monitoring overhead and 2) packets delivered to the

Regression-based Network Monitoring in Swarm Robotic Systems

Node 0 from Node 2

—e— REM Predicted RSS
-34{ e ActualRss

Node 10 from Node 11

—e— REM Predicted RSS
® Actual RSS

MobiQuitous 19, November 2019, Houston, Texas, USA

Node 0 from Node 7

—e— REM Predicted RSS
e ActualRSS

RSS (dB)

-
-52 ol
o
-54 o
.
3 -561 @)
2
bl
o 58
-60
-62
% -

0 20 40 60 80 100 120 140 160 0 25 50 75
Time (s)

(a) Node 0 and Node 2

(b) Node A and Node B

125 150 175 200 0 50 100 150 200
Time (s)

(c) Node 0 and Node 7

Figure 5: Predicted vs actual RSS between nodes in building evacuation

central server. The drone swarms success hinges on the number of
environmental monitoring packets delivered to the central server.

To enable a complete simulation, the network needed a cluster-
ing and routing scheme. Any clustering algorithm could be used
for REM. In order to see the impact that REM has on swarm per-
formance, a clustering scheme that relies on connectivity between
nodes was used. The clustering scheme used is a Weakly Connected
Dominating Set (WCDS) [10]. This clustering scheme assigns clus-
terheads that create a dominating set across the network with
gateway nodes between clusterheads. The goal of these simulations
is to see the impact of REM on swarm task performance. To do
this, clusterheads looked at their children to find a gateway node
that has the shortest path to the server. For the child nodes, the
nextNode is always the clusterhead unless the node is the gateway
node, then it is the next node in the path to the server, most often
a neighboring clusterhead. When a node comes in contact with the
server, the connection is propagated up through the network and
shortest paths are updated accordingly.

4.3 Internal Results

First, we evaluated parameters within REM. We performed opti-
mization experiments on three different parameters: 1) the initialize
count, I; 2) the max difference count, Dy, 4x; and 3) the number
of standard deviations for a model to become invalid, S. All of
these experiments were conducted using the same fixed parameters
outlined in Table 2.

Table 2: NS3 simulations environmental variable assign-
ments

H NS3 Variable Value H
Number of nodes 20
Simulation dimensions 1000m x 1000m
Node max speed 10 m/s
Node min speed 5m/s
Simulation Time 300 secs

Optimal Initialize Count. The first optimized parameter was
the initialize count. We also used this value for the window size
when new models are created. These simulations were done with
Dmax = 3 and S = 3. Four different values for the initialize count

were tested, I = 2, 3, 4, and 5. To analyze the performance of each
value, we calculated the average percent error for every point pre-
dicted by REM. The average percent error for the four different
initialize count values for predicting battery level and received
signal strength can be seen in Figure 6(a) and Figure 7(a).

The results show that the initialize count has a very small impact
on the performance of REM. This could be because NS3 provides
perfectly consistent RSS data. Therefore, the samples measured
always lie on the line of best fit. In practice, it is much more likely
for there to be bad samples that do not accurately represent RSS. In
this case, a higher initialize count would be needed to account for
the variance in the data. However, for this simulation, an initialize
count of three seems to yield the most reliable results. This is
surprising because one would expect the more samples measured,
the lower the error. The reason this is not the case is that the longer
REM waits to build the model, the closer the model gets to having
to change, resulting in a decrease in the duration of successful
predictions.

Optimal Max Difference Count. The second optimized pa-
rameter was the maximum difference count. These simulations
were done with I = 3 and S = 3. Like the initialize count, four differ-
ent simulations for the maximum difference count were performed
with Dpax = 2, 3, 4, and 5. The results from these simulations can
be seen in Figure 6(b) and Figure 7(b).

The optimal max difference count experiments yielded interest-
ing results. As expected, the lower the value of Dy, 4, the more
accurate the model. This is because REM will recalculate more of-
ten, increasing the likelihood of having an appropriate model for
the current trend of samples. However, this was not always the
case for both experiments. This could be for the same reason as the
initialize count.

Optimal Number of Deviations. The third internal optimized
REM parameter is the number of deviations. These simulations were
done with I = 3 and D;;,4x = 3. The results from these simulations
can be seen below in Figure 6(c) and Figure 7(c). We hypothesized
that a higher number of deviations would result in decreased error.
However, the difference between increased number of deviations
was less than expected. Figure 7(c) shows that increasing from three
deviations to five hardly changes the average percent error of the
REM prediction model. Again, this could be because of the nature

MobiQuitous ’19,

0.266

November 2019, Houston, Texas, USA

init_count Battery Prediction Accuracy

0.264

0.262

0.260

0.258

average percent error

0.256

0.254

20 25

3.0 35 4.0 45 5.0
init_count

0.266

0.264

0.262

0.260

0.258

average percent error

0.256

0.254

0.252

max_diff_count Battery Prediction Accuracy

20

25 30 35 4.0 45
max_diff_count

average percent error

0.2550

Rands and Han

num_deviations Battery Prediction Accuracy

0.2545

0.2540

0.2535

0.2530

0.2525

2.0

25 30 35 4.0 45
num_deviations

5.0

(a) Different initialize counts (b) Different maximum difference counts (c) Different number of deviations

Figure 6: Battery prediction accuracy for different internal parameters

init_count RSS Prediction Accuracy

max_diff_count RSS Prediction Accuracy

num_deviations RSS Prediction Accuracy

& 5

g 3
-

///

average percent error
average percent error

158

@
&

average percent error

oJN

— .

—

2.0 25 30 35 2.0 a5 5.0 20 25 30
init_count

(a) Different initialize counts

35

max_diff_count

(b) Different maximum difference counts

4.0 45 5.0 20 25 3.0 35 4.0 45 5.0
num_deviations

(c) Different number of deviations

Figure 7: Network RSS prediction accuracy for different internal parameters

of a simulation in that it provides perfect data. By increasing the
number of required o counts to recalculate a prediction model, REM
increases the chance of creating accurate prediction models.

4.4 External Results

To compare the effectiveness of REM, we developed a baseline
"brute force" network monitoring approach with the intention of not
approximating. The brute force algorithm follows a decentralized
hierarchical architecture. This approach uses the same clustering
and routing scheme as REM. Nodes enter a broadcasting state every
a seconds. In the broadcasting state, nodes will broadcast their
locally measured network monitoring values for RSS and battery
level. The node’s clusterhead will receive this information and store
it in an MIB.

We implemented the brute force algorithm in NS3. We compared
the success of delivering packets to a centralized server between
REM and three different update frequencies for the brute force
approach, « = 4, 8, and 12 seconds.

The external simulations compared REM to the brute force ap-
proach. For these simulations, we compared the different approaches
using average overhead per node and average packets received by
the server per node. The hypothesized outcome of these experi-
ments was REM providing a large decrease in overhead, but at the
sacrifice of decreased performance. This is because by predicting

the state of the network, REM introduces uncertainty and error. The
brute force approach also has error, but provides more frequent up-
dates of the network’s state. Because of the more frequent updates
and providing actual data about the network instead of predictions,
we hypothesized the brute force approach will be able to deliver
more packets to the central server than REM.

Impact of Node Count. The first parameter that was simulated
was node count. We simulated environments of 10, 20, 30, 40, and 50
nodes. All of the environmental parameters except the simulation
time were the same for these five experiments. The simulations
times for 10, 20, 30, 40, and 50 nodes were 180, 180, 180, 120, and
90 seconds respectively. The simulation space was 1000 m x 1000m
and nodes moved at a constant velocity of 7 m/s.

As hypothesized, REM provides much less overhead than the
brute force approaches. Figure 8(a) shows the average overhead
per node for the different simulations of node counts. REM has
significantly less overhead than that of the brute force approaches
for all node count simulations. Figure 8(b) shows the average over-
head in bytes/node for each of the four simulated approaches. REM
has approximately half of the overhead of the brute force approach
with the least overhead, where the update frequency was every
12 seconds. This means that the REM prediction models typically
lasted longer than 12 seconds. These results are encouraging in

Regression-based Network Monitoring in Swarm Robotic Systems

REM'’s ability to predict the state of a network using regressions
on measured RSS data.

Number of packets received by the central server was used to
show the performance of these four approaches. As shown in Fig-
ure 8(c) and Figure 8(d), all four approaches yield fairly similar
results. However, REM and the brute force with ¢ = 4 had the
highest performances with the most packets delivered.

Impact of Node Density. The next parameter that was simu-
lated was density. For these experiments, the node size was kept the
same at 20 nodes, and the size of the space was changed, resulting
in a change of density. We simulated environments of 500x500,
750x750, 1000x1000, and 1250x1250 meters. All simulations were
180 seconds long with the nodes moving at 7 m/s. As hypothe-
sized, REM has much less network monitoring overhead than the
brute force approaches. These results can be seen in Figure 9(a) and
Figure 9(b).

Similar to the node count, the performance of all four approaches
was relatively similar. REM had slightly worse performance than the
brute force approach with ¢ = 4. The results of these simulations
can be seen in Figure 9(c) and Figure 9(d).

Impact of Node Velocity. The final parameter that was tested
was different velocities. For these simulations, the node count was
20 nodes and the nodes moved in a 1000m x 1000m space. Constant
velocities of 2 m/s, 4 m/s, 7 m/s, 10 m/s, and 15 m/s were tested.
The velocity range for a Parrot Bepop 2 drone while taking video is
approximately 1.5 m/s to 10.5 m/s [1]. The max speed of this drone
was the motivation for performing the simulation at 15 m/s.

As hypothesized, REM had less overhead than the brute force
approaches. However, it should be noted in Figure 10(a) that when
moving at the top speed of 15 m/s, REM’s overhead increases and
comes closer to the brute force approach with @ = 12. This is
because as velocity increases, the lifetime of REM prediction models
decreases. As nodes move faster, they move in and out of range
of neighbors more frequently. This results in REM recalculating
models, increasing network monitoring overhead. Despite this,
Figure 10(b) shows that REM still has significantly less overhead
than the three brute force approaches.

Similar to the first two parameters, the performance of all four
approaches was relatively similar, with REM providing the most
packets delivered to the server. The results of these experiments
can be seen in Figure 10(c) and Figure 10(d).

Performance Summary. Overall, REM performed as expected.
By predicting the network state with regression-based approxima-
tion models, REM decreased network monitoring overhead. REM
provided little or no loss in performance when delivering packets
to the central server.

5 CONCLUSIONS

This study demonstrated a foundation for the development and
application of REM, our REgression-based network Monitoring ap-
proach. REM demonstrated capability to predict the RSS and battery
level of nodes in a swarm of mobile, networked robots. The robots
were collaborating towards a common goal, and REM’s imprecise
state monitoring provided little hindrance to the performance of
the swarm.

MobiQuitous 19, November 2019, Houston, Texas, USA

Effective network monitoring is vital to the success of swarm
robotics, and REM seeks to provide this utility. REM’s approximate
style network monitoring algorithm reduces overhead, saving en-
ergy, by predicting network states whenever possible. We plan on
continuing to develop REM and applying the framework to a va-
riety of swarm robotic tasks in highly constrained environments.
We hope that REM will help to ensure the successful performance
of swarm tasks.

ACKNOWLEDGMENTS

This work is supported in part by NASA SmallSat Technology
Partnership (STP) program with grant number 80NSSC18M0048.

REFERENCES

[1] 2019. Parrot BEBOP 2. https://www.parrot.com/us/drones/parrot-bebop-2

[2] Jose Alvarez, Stephane Maag, and Fatiha Zaidi. 2017. Monitoring dynamic mobile
ad-hoc networks: A fully Distributed Hybrid Architecture. In Proceedings of the
Advanced Information Networking and Applications (AINA). IEEE, 407-414.

[3] Mouna Ayari, Zeinab Movahedi, Guy Pujolle, and Farouk Kamoun. 2009. Adma:
Autonomous decentralized management architecture for manets: A simple self-
configuring case study. In Proceedings of the International Conference on Wireless
Communications and Mobile Computing: Connecting the World Wirelessly. ACM,
132-137.

[4] Remi Badonnel, R State, and Olivier Festor. 2006. Probabilistic management
of ad-hoc networks. In Proceedings of the Network Operations and Management
Symposium (NOMS). IEEE, 339-350.

[5] Jan Carlo Barca and Y Ahmet Sekercioglu. 2013. Swarm robotics reviewed.
Robotica 31, 3 (2013), 345-359.

[6] Nadia Battat, Hamida Seba, and Hamamache Kheddouci. 2014. Monitoring in
mobile ad hoc networks: A survey. Computer Networks 69 (2014), 82-100.

[7] Ritu Chadha, Yuu-Heng Cheng, Jason Chiang, Gary Levin, Shih-Wei Li, and
Alexander Poylisher. 2004. Policy-based mobile ad hoc network management for
DRAMA. In Proceedings of the Military Communications Conference (MILCOM),
Vol. 3. IEEE, 1317-1323.

[8] Shigang Chen and Klara Nahrstedt. 1998. An overview of quality of service
routing for next-generation high-speed networks: problems and solutions. IEEE
network 12, 6 (1998), 64-79.

[9] Wenli Chen, Nitin Jain, and Suresh Singh. 1999. ANMP: Ad hoc network man-
agement protocol. Journal on selected areas in communications 17, 8 (1999),
1506-1531.

[10] Yuanzhu Peter Chen and Arthur L Liestman. 2002. Approximating minimum

size weakly-connected dominating sets for clustering mobile ad hoc networks. In

Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking

& computing. ACM, 165-172.

Yuu-Heng Cheng, Abhrajit Ghosh, Ritu Chadha, M Levin Gary, Michelle Wolberg,

C Jason Chiang, and Gregory Hadynski. 2010. Managing network security policies

in tactical MANETs using DRAMA. In Proceedings of the Military Communications

Conference (MILCOM). IEEE, 960-964.

C. Chien-Chung Shen, C. Jaikaeo, C. Srisathapornphat, and C. Zhuochuan Huang.

2002. The Guerrilla management architecture for ad hoc networks. In Proceedings

of MILCOM 2002, Vol. 1. IEEE, USA, 467,472.

Laurent Decreusefond, T Tung Vu, and Philippe Martins. 2013. Modeling energy

consumption in cellular networks. In 25th International Teletraffic Conference

(ITC). IEEE, 1-7.

Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein,

and Wei Hong. 2004. Model-driven data acquisition in sensor networks. In

Proceedings of the Thirtieth international conference on Very large data bases.

VLDB Endowment, 588-599.

Harald T Friis. 1946. A note on a simple transmission formula. proc. IRE 34, 5

(1946), 254-256.

[16] Sana Ghannay, Sonia Mettali Gammar, Farouk Kamoun, and Davor Males. 2004.

The monitoring of ad hoc networks based on routing. IFIP Med-Hoc-NetaAZ04

(2004).

Praveen Gupta and Preeti Saxena. 2010. Energy Consumption in Wireless Ad

Hoc Network. In Proceedings of the 3rd International Conference on Emerging

Trends in Engineering and Technology (ICETET). IEEE, 831-835.

Hanif Kazemi, George Hadjichristofi, and Luiz A DaSilva. 2008. MMAN-a monitor

for mobile ad hoc networks: design, implementation, and experimental evaluation.

In Proceedings of the Third ACM International Workshop on Wireless Network

Testbeds, Experimental Evaluation and Characterization. ACM, 57-64.

[19] Justin Lipman, Paul Boustead, Joe Chicharo, and John Judge. 2003. Resource
aware information collection (raic) in ad hoc networks. In Proceedings of the 2nd

[11

[12

(13

=
oot

=
&

=
=

[18

https://www.parrot.com/us/drones/parrot-bebop-2

Mo

(a) Network overhead for different node

Overheadnode (bytes)
s

biQuitous 19, November 2019, Houston, Texas, USA

Nade Count Netwark Monitoring Overhead Node Count Average Overhead

REM
s Brute Force 4
+ 4 BruteForce
-~ Brute Force 12

3500
4000
3000

000 2500

2000

2000 1500}

Average Overhead (bytesinode)

1000}
1000

X T Brute force 4 Brute force 8 Brute force 12

R
Node Count (number of nodes)

counts

Overheadnode (bytes)

(a)

tie

Overheadnode (bytes)

(a)

(b) Average overhead of each model

Rands and Han

Node Count Packets Received by Central Server Node Count Packets Received

s REM EY

N B
‘0B
111

+= Brute Force 12

Average Packets Received by Server per Node.

(c) Packets delivered to server for differ-
ent node counts

44+ BruteForce 8
[T [REM

Brute force d Brute force 8 Brute force 12

R
Node Count (number of nodes)

(d) Average packets delivered of each
model

Figure 8: Node count external simulations comparing REM to three brute force models

Density Network Monitoring Overhead Density Average Overhead

REM
Brute Force 4
+ 4 BruteForce
-~ Brute Force 12

4000}

5000

3500
5000

4000

3000 2000

2000},

Average Overhead (bytesinode)

1000

%0 w0 70 ®o 00 1000
Density (width in meters)

Tioo 1200 1300 AEM Brute force 4 Brute force 8 Brute force 12

Node Count Packets Received by Central Server Density Average Packets Received

s REM
s Brute Force 4
44+ BruteForce 8
+= Brute Force 12

i

7
/
111

Average Packets Received by Server per Node.

(c) Packets delivered to server for differ-
ent densities

s REM Brute force d Brute force 8 Brute force 12

R
Node Count (number of nodes)

(d) Average packets delivered of each
model

Figure 9: Density external simulations comparing REM to three brute force models

Network overhead for different densi- (b) Average overhead of each model
s
Velocity Network Montoring Overheact Velocity Average overhead
e
3500 Brute Force 4 o
srute Force 8
3000 Brute Force 12 .
‘é 2500
H
2500 i
= 200
20 3
0| e e e
B £ 100
o007 e o H
sa0 e 500
N N A T AW Bt forced Butetores Bt Toce s
Velocity (m/s)
Network overhead for different veloc- (b) Average overhead of each model

ities

[20

[21]

[22]

[23]

[24]

[25]

Velocity Packets Received by Central Server. Velocity Average Packets Received

j R
T 4 Brute Force 4
ST, |44 Bruteforce s
e P erorce s
S .

Average Packets Received by Server per Node.

(c) Packets delivered to server for differ-
ent velocities

‘o B
/
{11

1 i REM

T g Brute force d Brute force 8 Brute force 12

B o
Velocity (mis)

(d) Average packets delivered of each
model

Figure 10: Velocity external simulations comparing REM to three brute force models

Mediterranean Ad Hoc Networking Workshop. 161-168.

Apostolos Malatras, Antonios M Hadjiantonis, and George Pavlou. 2007. Ex-
ploiting context-awareness for the autonomic management of mobile ad hoc
networks. Journal of Network and Systems Management 15, 1 (2007), 29-55.
Inaki Navarro and Fernando Matia. 2012. An introduction to swarm robotics.
Isrn robotics 2013 (2012).

Don Ngo, Naveed Hussain, Mahbub Hassan, and Jim Wu. 2003. WANMON: a
resource usage monitoring tool for ad hoc wireless networks. In Proceedings of
the International Conference on Local Computer Networks (LCN). IEEE, 738-745.
Jéferson C Nobre, Pedro Arthur PR Duarte, Lisandro Z Granville, Liane MR
Tarouco, and Fabio Junior Bertinatto. 2014. On using P2P technology to enable
opportunistic management in DTNs through statistical estimation. In Proceedings
of the International Conference on Communications (ICC). IEEE, 3124-3129.
Ramviyas Parasuraman, Sergio Caccamo, Fredrik Baberg, and Petter Ogren.
2016. CRAWDAD dataset kth/rss (v. 2016-01-05). Downloaded from https://
crawdad.org/kth/rss/20160105/outdoor. https://doi.org/10.15783/C7088F traceset:
outdoor.

Kaustubh S Phanse and Luiz A Dasilva. 2004. Protocol support for policy-based
management of mobile ad hoc networks. In Proceedings of the Network Operations
and Management Symposium (NOMS), Vol. 1. IEEE, 3-16.

[26] Krishna N Ramachandran, Elizabeth M Belding-Royer, and KC Almeroth. 2004.

[27

[29

DAMON: A distributed architecture for monitoring multi-hop mobile networks.
In Proceedings of the First Annual Communications Society Conference on Sensor
and Ad Hoc Communications and Networks (SECON). IEEE, 601-609.

Ewerton M Salvador, Daniel F Macedo, José Marcos Nogueira, Virgil Del Duca
Almeida, and Lisandro Z Granville. 2016. Hierarchy-based monitoring of vehicu-
lar Delay-Tolerant Networks. In Proceedings of the Consumer Communications &
Networking Conference (CCNC). IEEE, 447-452.

Dominik Stingl, Christian Gross, Leonhard Nobach, Ralf Steinmetz, and David
Hausheer. 2013. BlockTree: Location-aware decentralized monitoring in mobile
ad hoc networks. In Proceedings of the 38th Conference on Local Computer Networks
(LCN). IEEE, 373-381.

Dominik Stingl, Reimond Retz, Bjorn Richerzhagen, Christian Gross, and Ralf
Steinmetz. 2014. Mobi-g: Gossip-based monitoring in manets. In Proceedings of
the Network Operations and Management Symposium (NOMS). IEEE, 1-9.

https://crawdad.org/kth/rss/20160105/outdoor
https://crawdad.org/kth/rss/20160105/outdoor
https://doi.org/10.15783/C7088F

	Abstract
	1 Introduction
	2 Related Work
	3 Regression based Network Monitoring (REM)
	3.1 Overview
	3.2 Generating REM Models
	3.3 Regression Window
	3.4 Error Model
	3.5 Network Packets and MIB
	3.6 Model Creation Complexity

	4 Performance Evaluation
	4.1 Validation of REM Prediction Models
	4.2 Simulation Scenario
	4.3 Internal Results
	4.4 External Results

	5 Conclusions
	Acknowledgments
	References

